Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni2P/N,P-codoped carbon hybrids
نویسندگان
چکیده
منابع مشابه
Robust object representation by boosting-like deep learning architecture
This paper presents a new deep learning architecture for robust object representation, aiming at efficiently combining the proposed synchronized multi-stage feature (SMF) and a boosting-like algorithm. The SMF structure can capture a variety of characteristics from the inputting object based on the fusion of the handcraft features and deep learned features. With the proposed boosting-like algor...
متن کاملN,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions.
The high cost and scarcity of noble metal catalysts, such as Pt, have hindered the hydrogen production from electrochemical water splitting, the oxygen reduction in fuel cells and batteries. Herein, we developed a simple template-free approach to three-dimensional porous carbon networks codoped with nitrogen and phosphorus by pyrolysis of a supermolecular aggregate of self-assembled melamine, p...
متن کاملOxygen, Carbon and Nitrogen evolution in galaxies
We discuss the evolution of oxygen, carbon and nitrogen in galaxies of different morphological type by adopting detailed chemical evolution models with different star formation histories (continuous star formation or starbursts). In all the models detailed nucleosynthesis prescriptions from supernovae of all types and lowand intermediate-mass stars are taken into account. We start by computing ...
متن کاملElectronic Structure and Reactivity of Metal Carbenes
Metal carbenes have for a long time been classified as Fischer or Schrock carbenes depending on the oxidation state of the metal. Since the introduction of N-heterocyclic carbene complexes this classification needs to be extended because of the very different electronic character of these ligands. The electronic structure of these different kinds of carbene complexes is analysed and compared to...
متن کاملElectronic band structure of a Carbon nanotube superlattice
By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Green Energy & Environment
سال: 2020
ISSN: 2468-0257
DOI: 10.1016/j.gee.2020.07.012